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We experimentally demonstrate chaos generation based on collisions of electrical solitons on a

nonlinear transmission line. The nonlinear line creates solitons, and an amplifier connected to it

provides gain to these solitons for their self-excitation and self-sustenance. Critically, the amplifier

also provides a mechanism to enable and intensify collisions among solitons. These collisional

interactions are of intrinsically nonlinear nature, modulating the phase and amplitude of solitons,

thus causing chaos. This chaos generated by the exploitation of the nonlinear wave phenomena is

inherently high-dimensional, which we also demonstrate. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4884943]

Generation of chaotic dynamics in electronic media has

been of pure and applied interest, and various ingenious cha-

otic circuits have been created, with a most notable example

being Chua’s circuit.1–6 Since chaotic circuits can be con-

structed relatively easily—as compared to, for instance, opti-

cal or hydrodynamic chaotic systems—and their operation

can be controlled in a facile, versatile manner, they represent

a readily accessible experimental platform to emulate and in-

terrogate chaotic behaviors that can occur in various other

physical media. Chaotic circuits have also found such appli-

cations as random number generation5 and chaotic

communication.6–8

Adding to the repertoire of chaotic circuits, here we

experimentally demonstrate another type of chaotic circuit. It

is a self-excited, self-sustained chaotic oscillator, which com-

bines, in a loop, an electronic amplifier and a nonlinear elec-

tromagnetic medium known as nonlinear transmission line

(NLTL) [Fig. 1]. The NLTL creates voltage soliton pulses.9–12

The amplifier provides gain to the solitons for their self-

excitation and self-sustenance, but it also promotes collisions

among the solitons, which is the key machinery behind our

chaos generation. That is, we exploit the (self-sustained) phys-

ical nonlinear wave phenomena in attaining chaos.

Another key feature of our system lies in the intrinsic
high-dimensionality of chaos it generates. The NLTL

[Fig. 1] is an array of inductors and variable capacitors (var-

actors)—such as reverse-biased pn-junction diodes—whose

capacitance varies with the voltage applied across them,

thus, is nonlinear. Since a large number of these energy stor-

age components comprise the NLTL, the chaos emerging

from our single oscillator is intrinsically high-dimensional.

This contrasts prior high-dimensional chaotic circuits3,4 that

are attained by coupling multiple low-dimensional chaotic

subcircuits.

Chaotic oscillators utilizing spin wave solitons in mag-

netic films, optical solitons in fibers, and solitons in long

Josephson junctions have been demonstrated.13–15 Our cha-

otic soliton oscillator may be thought of as their electrical

analogue. But, whereas the spin-wave and optical solitons

are described by the nonlinear Schr€odinger equation and the

Josephson-junction solitons by the sine-Gordon equation, the

NLTL solitons are governed by the Korteweg-de Vries

(KdV) equation.16,17

To generate chaos, we promote collisions between soli-

tons. Imagine two solitons with differing amplitudes travel-

ing down the NLTL [Fig. 2(b)]. Since a taller soliton travels

faster—this amplitude-dependent speed is one of key traits

of solitons—the taller soliton catches up and collides with

the shorter one. During the collision, the joint pulse assumes

an amplitude not possible with linear superposition. After

the collision, both solitons recover their original profile, but

their positions are shifted from the positions expected in the

absence of collisions18 [see Fig. 2(b) vs. (a); d1 is the posi-

tion shift of the taller soliton due to collision]. These ampli-

tude and position modulations born of collisions are

responsible for our chaos generation.19

The amplifier can be designed to suppress or promote

soliton collisions. A soliton traveling on the NLTL is always

accompanied by small perturbations such as dispersive tails

and noise. If the amplifier has a level-dependent gain, i.e., if

it amplifies [attenuates] a signal above [below] a certain

threshold (in analogy to saturable absorption in optics),

the soliton is sustained—if its amplitude is larger than the

threshold—while the small perturbations are suppressed

[Fig. 3(a)]. Consequently, a stable periodic train of solitons

(mode-locking) is observed in the time-domain voltage mea-

surement at a node on the NLTL, as we experimentally dem-

onstrated in prior work.9–12 By contrast, if the amplifier

offers full gain to all signal levels, the perturbations

will grow out to form a small, parasitic soliton (or solitons)

[Fig. 3(b)]. As this small parasitic soliton and the tall main

soliton continue to circulate the loop at different speeds and

keep colliding, their amplitudes and positions continue to be

modulated, causing chaos. This was seen in our prior simula-

tion work.10,20 Experimental demonstration of this chaotic

soliton oscillation is the goal of this work.

Before moving on to the experimental demonstration,

we clarify that while in our system soliton collisions pro-

moted by the amplifier generate chaos, in a pure KdV sys-

tem—, e.g., a ring of idealized lossless NLTL with no
amplifier—the dynamics involving soliton collisions do not
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develop into chaos despite the phase and amplitude modula-

tions the collisions cause; remarkably, it exhibits rather peri-

odic behaviors such as the Zabusky-Kruskal recurrence.17

This may be attributed to the complete integrability of the

pure KdV system. But our system is not governed by the

pure KdV equation due to the amplifier gain and NLTL loss,

and thus is non-integrable; in this modified KdV system,

chaos can arise from soliton collisions.21 Thus, the cruciality

of both the amplifier and NLTL soliton collision dynamics

for our chaos generation is consistent with the formal

consideration.

We first build a discrete oscillator that can produce both

mode-locked and chaotic dynamics [Fig. 4(a)]. As we tune

the amplifier characteristic from level-dependent gain to full

gain, soliton collisions initially suppressed (which yields

mode-locked soliton oscillation) are increasingly promoted,

leading to chaotic oscillation. This dual-purpose circuit thus

allows us to examine the collision-mediated route from sta-

ble to chaotic oscillation.

To tune the amplifier gain characteristic, we vary the re-

sistance Re, which sets the time constant of the ReCe network

connected to the emitter of transistor N1 [Fig. 4(a)]. With a

large Re, the dc average of the emitter voltage of N1 pulls up,

thus small-amplitude inputs at the base of N1 are attenuated

(level-dependent gain).9–11 With a small Re, the dc average of

the emitter voltage of N1 pulls down, thus small-amplitude

inputs at the base of N1 now can be amplified as well (full

gain). This tunable first stage built around N1 is followed by

the second stage based on transistor N2; since both stages

invert the polarity of their respective inputs, the overall am-

plifier is non-inverting; this overall non-inversion is needed

for mode-locked operation, while it does not matter for cha-

otic oscillation. The rest of capacitors and inductors in the

amplifier are for biasing, decoupling, and loading.

The NLTL consists of 24 inductor-varactor sections.

Each inductance is 40 nH. Each varactor, which is a reverse-

biased pn-junction diode, has a nominal capacitance of

16 pF. The nominal characteristic impedance Z0 of the

NLTL is then 50 X. The NLTL is terminated with a resistor

Rt� Z0 and a decoupling capacitor Ct.

Figures 4(b)–4(e) show the measured voltage V(t) at the

middle of the NLTL for various values of Re. We measure

V(t) with a real-time oscilloscope (sampling rate: 5 GS/s) in

conjunction with an active high-impedance (100 kX) probe.

For Re¼ 600 X [Fig. 4(b)] with which level-dependent gain

FIG. 2. Effects of soliton collision.

FIG. 3. (a) Level-dependent gain for stable, mode-locked dynamics. (b) Full

gain for chaotic dynamics.

FIG. 1. Conceptual illustration of chaotic soliton oscillator.

FIG. 4. (a) Oscillator that can be mode-locked or chaotic. (b)–(e) Measured

V(t) & phase-space trajectory for varying Re.
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firmly sets in, four tall, main, identical solitons circulate in

the loop after the initial start-up, while small perturbations

are suppressed. As a result, a periodic train of mode-locked

solitons manifest in V(t) with a pulse repetition period of

T¼ 5.7 ns (if the transmission line is linear, sinusoidal oscil-

lation will occur22). The corresponding 2-dimensional phase-

space trajectory—V(tþD) vs. V(t) with D¼ 1.2 ns—is a

one-loop limit cycle; D¼ 1.2 ns is chosen via the standard

prescription of the time-delay embedding method.23

With Re reduced to 420 X [Fig. 4(c)], the threshold for

the level-dependent gain is lowered. This allows not only the

four main solitons but also four parasitic shorter solitons to

circulate in the loop, where the speed of the shorter solitons

is half of that of the taller ones. Thus, in V(t), each tall pulse

corresponds to a main soliton arriving at the measurement

node, while each short pulse is the nonlinear joint effect of a

main soliton and a shorter parasitic soliton colliding at the

node. This interplay between the tall and short solitons signi-

fies the period-doubling bifurcation that has occurred in

reducing Re from 600 X to 420 X. The bifurcation is also

seen by comparing Figs. 4(c) to 4(b); the period of the for-

mer is approximately twice that of the latter (it is not exactly

twice, as the amplifier delay and soliton amplitude/speed are

altered with the changed Re). Correspondingly, the phase-

space trajectory in Fig. 4(c) makes two loops before closing.

As we further reduce Re to 350 X [Fig. 4(d)] to further

lower the threshold of the level-dependent gain, more para-

sitic solitons grow out of small perturbations, soliton colli-

sions become prevalent, and an aperiodic waveform emerges.

(Due to noise and lack of precise Re control, we cannot

resolve the infinite number of period-doubling bifurcations in

going from Figs. 4(c) to 4(d).) This trend is intensified with

further reduction of Re to 200 X [Fig. 4(e)]; the amplifier now

exhibits a full-gain characteristic, and V(t) and phase-space

trajectory now show characteristically chaotic oscillation.

Having demonstrated the route from mode-locked to

chaotic oscillation via increased soliton collisions, we now

move the focus to examining the nature of the chaotic sig-

nals. To this end, we construct a second, now always-

chaotic, soliton oscillator at the discrete level [Fig. 5(a)]. Its

amplifier is simplified (while the NLTL remains the same),

for it does not have to incorporate the gain characteristic tun-

ing; it just has a full-gain characteristic. Thus, the ReCe net-

work from the previous amplifier is omitted. Also the second

stage of the previous amplifier is removed, because whether

the amplifier is inverting or non-inverting does not matter for

chaos generation. The overall gain magnitude, however, is

carefully adjusted via the inductance Lc (as in the previous

amplifier in the chaotic mode), because the gain should be

large enough for solitons to be sustained, but too large a gain

would saturate the input signal into pulses of similar ampli-

tudes, with which soliton collisions are difficult to achieve.

Figures 5(b) and 5(c) show the measured voltage V(t) at

the middle of the NLTL and its power spectrum with respect

to 50 X. The aperiodic waveform and continuous spectral

distribution indicate chaotic oscillation.

To further support that V(t) is chaotic, we perform

Lyapunov analysis.24,25 A trajectory in a 6-dimensional

phase space—[V(t), V(tþD), V(tþ 2D),…, V(tþ 5D)] with

D¼ 1.2 ns—consisting of 261 600 points is considered

(although the chaos has a higher dimensionality as seen

shortly, the use of this lower dimensionality does not invali-

date the Lyapunov analysis). Among all the 261 600 points

comprising this trajectory, we choose a point and locate its

nearest neighbor [P0 and Px, Fig. 6(a)] and consider two sub-

trajectories starting from these two points. We then measure

the time evolution of their distance [d0, d1, d2, … Fig. 6(a)].

The result is shown as the solid curve in Fig. 6(b), which

shows that a pair of initially close sub-trajectories separate

exponentially fast.

FIG. 5. (a) Chaotic soliton oscillator. (b) Measured waveform. (c) Its power

spectrum with respect to 50 X.

FIG. 6. (a) Two sub-trajectories. (b) Evolution of the distance between two

initially close sub-trajectories. Solid: from a pair. Dashed: average from 200

pairs. (c) Correlation sum curves for varying DE. (d) DC vs. DE.
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We repeat the same analysis for 200 different pairs of ini-

tially close sub-trajectories (with each initial distance d0

smaller than 10 mV). The dashed curve in Fig. 6(b) is the aver-

aged result; the initial positive slope of the curve, or the

positive Lyapunov exponent k, shows that two nearby sub-

trajectories separate exponentially fast, i.e., d (t)� ektd0 (the

curve eventually saturates, as the separation of two sub-

trajectories grows comparable to the span of the overall phase

portrait). This Lyapunov analysis along with the waveform and

spectrum [Fig. 5] supports the chaotic nature of the oscillator.

To find the dimensionality of the chaos generated by the

oscillator of Fig. 5(a), we perform analysis on the correlation

dimension, DC, following the well-established prescription.26

Fig. 6(c) shows the correlation sum C(r) as a function of r,

the threshold distance in the reconstructed phase space. In

Fig. 6(c), each curve is attained for a different embedding

dimension DE; the uppermost curve is for DE¼ 2 and the rest

of the curves are obtained by increasing DE in steps of 4. As

DE increases, the slopes of the curves saturate to 11—see

also Fig. 6(d)—from which we conclude DC� 11. This high-

dimensional chaos is due to the large number of energy stor-

ing elements (24 inductor-varactor pairs) in the NLTL. The

measured dimensionality of 11 is less than the number of the

relevant energy storing elements, because the voltages of

neighboring varactors are correlated.

We have generated chaos by colliding solitons on the

NLTL. While there exists a variety of chaotic circuits, the

chaos generation principle demonstrated in this work can be

particularly attractive for large-bandwidth applications,

because of the high-speed nature of the NLTL, i.e., short sol-

iton pulse duration on the NLTL;27,28 integrated NLTLs

using Schottky diode varactors have been shown to achieve

a sub-picosecond pulse rise time.27 Therefore, if our chaotic

circuit is integrated and optimized for the speed reaching

into the THz regime, it may be used as a ultrahigh-rate ran-

dom number generator5 and for high-bandwidth encrypted

chaotic communication based on chaotic transmitter-receiver

synchronization.6–8 In this connection, it would be also inter-

esting to extend this work into other types of THz wave

propagation media, in particular, low-dimensional plasmonic

media such as GaAs/AlGaAs quantum well and gra-

phene,29–33 where soliton propagation can be enabled by

integrating varactor nonlinearity with the plasmonic media.
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